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 This paper deals with an empirical correlation for easy estimation of effective 
thermal conductivity (ETC) of highly porous two-phase systems based on 
experimental data available. Recently, Calmidi & Mahajan [1] and Boomsma & 
Poulikakos [2] have presented geometrical models for highly porous metal foams. 
However, our approach is based on numerical simulations in which ETC of a random 
two-phase medium is being comprised of contributions from both the phases. To take 
account of highly conducting phase, non-linear flow of heat flux lines, random 
distribution of the phases and non-uniform shape of particles, a correlation term F is 
introduced. F is computed using the proposed relation and experimental data available 
in the literature. An effort is being made to correlate the values of F estimated 
numerically, in terms of ratios of thermal conductivity of the phases, geometry of the 
material used and the porosity of the matrix. Best fitted relation for F with ratios of 
thermal conductivity and porosity is presented here. ETC of highly porous systems 
has been calculated using it in the proposed expression. A very good agreement is 
observed with experimental data of metallic foams and the results of independent 
calculation. Comparison of the proposed relation with different models [2,3] has also 
been made. 
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1. INTRODUCTION   

              Search for the materials of industrial importance and their characterisation is 
always needed and is a challenging task for engineers and physicists. High fluid 
porosity metal foams have long been used in design of aircraft wing structure in the 
aerospace industry, catalytic surfaces for chemical reactions, core structure for high 
strength panels, and containment matrix and burn rate exchanger for solid propellants. 
The ETC depends on various characteristics of the material such as thermal 
conductivity, porosity, size of the particles and packing of the constituent phases. 
Accounting for all these factors in order to predict ETC is a complex affair. In the 
literature one finds several efforts [4-9] in which the situation has been simplified by 
assuming that the particles are of specific shape and arranged in a particular geometry 
within the continuous phase. 
          
              Recently, Calmidi & Mahajan [1] and Boomsma & Poulikakos [2] developed 
models utilizing geometrical estimate for calculation of the effective thermal 
conductivity specifically for metallic foams saturated with a fluid. For high porosity 
metal foams Calmidi & Mahajan [1] presented a one dimensional heat conduction 
model considering the porous medium to be formed of a two dimensional array of 
hexagonal cells. Whereas Boomsma & Poulikakos [2] proposed a three dimensional 
model using metal foam structure in the form of tetrakaidecahedral cells with cubic 
nodes at the intersection of two nodes. Both the models involved a geometric 
parameter that was evaluated using the experimental data. Recently, Bhattacharya et 
al [3] has extended the analysis of Calmidi & Mahajan [1] with a circular intersection, 
which results in a six fold rotational symmetry.      
              
               In the present paper we have tried to develop empirical relation for quick 
estimation of effective thermal conductivity of highly porous systems. In order to 
incorporate varying individual geometries and non-linear flow of heat flux lines 
generated by the difference in thermal conductivities of constituent phases, a 
correlation term F has been introduced. Expression for correlation term F has been 
obtained by simulating experimental data reported in the literature. The present 
approach is simple and provides wider applicability of the proposed relation and 
enhances its ability to predict correctly the ETC of real two-phase systems.  
 
 
2. MATHEMATICAL FORMULATION   
 
              In literature [10-13] one finds that the effective thermal conductivity of a 
composite is an additive property. Considering various components as resistors one 
can take a combination of such resistors to predict effective thermal conductivity. 
This is a common practice adopted to predict effective thermal conductivity from the 
thermal conductivity of the constituent phases. Accepting the similarity, a relation is 
proposed by us in the following manner. 
               
              Consider a two-phase medium made up of solid material (subscript s) and a 
fluid (subscript f) filling the pore space having volume fractions (1-φ) and φ 
respectively. The matrix is supposed to made up of layers oriented parallel and 
perpendicular to the direction of heat flow alternately. The effective thermal 
conductivity of parallel layers (λII) is given by the weighted arithmetic mean and that 



of perpendicular layers (λ⊥ ) by weighted harmonic mean. The corresponding 
expressions are  

 
λII   =   φ λf  + (1 - φ) λs                                       (1) 

and 
 

λ⊥    =   λf λs /[( 1-φ) λf  +  φ λf]                            (2) 
 
These are upper and lower bounds on the effective thermal conductivity (λe) of a two-
phase system, therefore, λe will obviously lie between these two limits. As these 
relations do not predict the effective thermal conductivity of real two-phase systems 
correctly, a different kind of weighted geometric mean is proposed as 

 
                         

     λe  =  λII
F  λ⊥

(1-F)                                            (3)     
 
 
Where F is assumed to be numerical correlation factor and may be defined as Fth 
fraction of the material oriented in the direction of heat flow and remaining (1-F)th 
fraction is oriented perpendicular to the direction of heat flow. ETC of a two-phase 
system is found to depend on the ratio (λs/λf) of thermal conductivity of the 
constituent phases, where λs is the thermal conductivity of solid phase and λf is the 
thermal conductivity of fluid phase. A higher ratio favours a larger fraction of the 
thermal conductivity in a direction perpendicular to heat flow. 
                             
              We have solved equation (3) mathematically for F on substituting λII and λ⊥  
from equations (1) & (2) as 
 
 
                                       ln [φ. λe/λf    +  ( 1 - φ ) λe/λs ] 

   F    =     -----------------------------------------------                   (4) 
                                   ln [1 + φ (1 - φ) { λf/λs + λs/λf - 2 }] 
 
 
              The correlation factor F may be a function of ratio of thermal conductivity of 
constituent phases and porosity of the system. Therefore, the variation of F against R 
= φ1/2 ln (λs/λf) is plotted in fig 1. It is observed that F increases roughly linearly with 
increasing R. We have used a curve fitting technique and found that the expression 

 
 

F =  0.3227 + 0.0615 φ1/2 ln (λs/λf)                                     (5) 
                   
                       having R’2 = 0.9176. 
 
 
Best fitted the curve in fig. 1. It is also observed from experimental results that the 
expression (5) does not represent the true state of affairs of a real system. 
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Figure 1. Variation of F with R 

 
              In addition to the physical parameters such as porosity and the ratio of 
thermal conductivity of the constituent phases, F is also found to depend upon various 
other parameters. Such parameters are given below: 
 
2.1. Shape factor. If l and L are respective dimensions (areal) of resistors (slabs), 
perpendicular and parallel to the direction of heat flow then shape factor is given by 
l/L. For spherical particles this value is unity. For granular systems where the particles 
are oriented in all possible directions, its average value is also unity [14].  
 
2.2. Sphericity of particles. Angularity of grains in a two-phase system greatly alters 
its thermo-physical properties. Experiments show that the behaviour of a system 
packed with non-spherical particles is radically different to those involving spherical 
particles. Sphericity is a measure of the roundness of the particles. Wedell [15] has 
defined it as s/S, where s is the surface area of a sphere having the same volume as 
that of the particle, S being the actual surface area. For spherical particles its value is 
unity and for particles of any other shape sphericity < 1. An account of particle-to-
particle conduction of heat in a system will require knowledge of sphericity. As 
sphericity decreases particle-to-particle conduction decreases. 
 
2.3. Formation resistivity factor. The flow of energy depends on the geometrical 
characteristics of the medium also. These characteristics have been found [14,16&17] 
to be associated with a dimensional factor called formation resistivity factor.   
 
              Thus for practical utilisation, we have to modify equation (5) by 
incorporating some correction term C. Accommodating all the parameters, the most 
appropriate expression for F was found to be 
 

F = C {0.3227 + 0.0615 φ1/2 ln (λs/λf)}             (6) 
 
Correction term C is calculated using equation (6) and data available in table (1) for 
various systems and is plotted in figures 2-6 for several relationships of λs/λf and φ. It 
is also interesting to see from figure 2 that the value of C increases to a certain extent 



as the ratio of thermal conductivity of the constituent phases increases after that C 
decreases as the ratio increases. Here average values of C are 0.8511, 1.1056, 1.1676 
and 0.8854 for aluminium-air, aluminium-water, reticulated vitreous carbon (RVC)-
air and reticulated vitreous carbon (RVC)-water systems respectively. 
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Figure 2. Variation of C with ln (λs/λf) 
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Figure 3. Variation of C with φ in aluminium-air system 
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Figure 4. Variation of C with φ in aluminium-water system 

 

 Figures 3 to 6 show the variation of C with porosity for two separate cases 
(aluminium-fluid and RVC-fluid systems). It is observed on examining the figures 
that variation in C with porosity is nearly constant in metallic foams; where as in non-
metallic foams C increases as porosity increases. Now, using equation (6) in to   
equation (3), effective thermal conductivity of any type of the systems can be 
computed. 
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Figure 5. Variation of C with φ in RVC-air system 
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Figure 6. Variation of C with φ in RVC-water system 

 

3. CALCULATIONS AND VALIDATION 

              To validate our empirical correlation, we considered four representative 
combinations of high porosity foam materials and fluid in the present calculations i.e. 
aluminium in air, aluminium in water, reticulated vitreous carbon (RVC) in air and 
reticulated vitreous carbon (RVC) in water [3]. The values of ETC has been 
calculated using equation (3) and compared the results as given in table 1. It has been 
observed that the calculated values of ETC are very close to the experimental results 
within average percentage deviation of just over 3.3. In table 2 experimental results of 
the ETC for the same samples are compared with the calculated values of the 
Boomsma’s and Bhattacharya et al models. The expressions as used in the 
calculations have been given in the appendix. To confirm our proposition, the average 
percentage deviation from the experimental results for each model has been 
determined and mentioned at the bottom of the table 2. From both the tables it is 
found that the percentage deviation is least for our empirical proposition.   
 
 
4. CONCLUSIONS 
 
              The empirical correlation given here is for highly porous foam like materials, 
but it is equally valid for the calculation of ETC for other types of materials. It has a 
single correlation factor, which is valid for all types of systems. It has potential for 
further refinements to predict ETC values of consolidated and reinforced composites.    
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APPENDIX: 
 
              The various expressions and correction terms for Boomsma’s model and 
Bhattacharya’s are shown below: 
 
The Boomsma’s model (2001) is 
                                                              √2 
                      λe  =              _______________________________                                              (A) 
                                              2 [ RA + RB + RC + RD] 

 

Where RA = 4F/[{2e2 + πF (1 - e)}λs + {4 – 2e2 - πF (1 - e)}λf], 

RB = (e-2F)2 / [(e-2F) e2λs + {2e – 4F – (e – 2F) e2}λf],  

RC = (√2 – 2e)2 /[{2πF2(1-2e√2)λs} + 2{√2 – 2e - πF2 (1 - 2e√2)} λf],  

RD = 2e/[e2λs + (4 – e2) λf],   

F = √[√2{2 – (5/8)e3√2 – 2(1 - φ1)}/ {π(3 – 4e√2 – e)}], 

and e = 0.339. 

 

Bhattacharya’s model (2002) is 

                                                                                          (1 – F) 
                 λe    =      F{φfλf  -  (1 - φf)λs }  +    __________________________                      (B) 
                                                                            {φf/λf  -  (1 - φf)/λs } 

Where F = 0.35. 

Symbols involved in the formulae (A) and (B) have the same meaning as in the 
previous part in the paper.  

 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1. Comparison of ETC values for two-phase systems calculated using equation 3. The 
thermal conductivity is in W m-1 K–1. 
 
S. 
No. 

Type of the sample    φf   λs    λf λe (expt) λe (theo) 
 

  %  
error 

1 Al/airI 0.971 218.0 0.026 2.7 2.65 1.9 

2 Al/airI 0.946 218.0 0.026 4.6 4.36 5.2 

3 Al/airI 0.905 218.0 0.026 6.7 6.60 1.5 

4 Al/airI 0.949 218.0 0.026 3.9 4.17 6.9 

5 Al/airI 0.909 218.0 0.026 6.7 6.41 4.4 

6 Al/airI 0.978 218.0 0.026 2.2 2.10 4.4 

7 Al/airI 0.949 218.0 0.026 4.0 4.17 4.3 

8 Al/airI 0.906 218.0 0.026 6.9 6.55 5.0 

9 Al/airI 0.972 218.0 0.026 2.5 2.57 2.8 

10 Al/airI 0.952 218.0 0.026 3.9 3.97 2.0 

11 Al/airI 0.937 218.0 0.026 4.5 4.91 9.1 

12 Al/waterI 0.971 218.0 0.615 3.7 3.54 4.2 

13 Al/waterI 0.946 218.0 0.615 5.4 5.23 3.2 

14 Al/waterI 0.905 218.0 0.615 7.65 7.44 2.7 

15 Al/waterI 0.949 218.0 0.615 4.8 5.04 5.0 

16 Al/waterI 0.909 218.0 0.615 7.6 7.25 4.6 

17 Al/waterI 0.978 218.0 0.615 3.05 3.00 1.8 

18 Al/waterI 0.949 218.0 0.615 4.95 5.04 1.8 

19 Al/waterI 0.906 218.0 0.615 7.65 7.40 3.3 

20 Al/waterI 0.972 218.0 0.615 3.3 3.47 5.1 

21 Al/waterI 0.952 218.0 0.615 4.75 4.85 2.1 

22 Al/waterI 0.937 218.0 0.615 5.35 5.76 7.6 

23 RVC/airI 0.9664 8.5 0.026 0.164 0.164 0.0 

24 RVC/airI 0.9724 8.5 0.026 0.15 0.145 3.2 

25 RVC/airI 0.9615 8.5 0.026 0.17 0.178 4.6 

26 RVC/airI 0.9681 8.5 0.026 0.16 0.160 0.0 

27 RVC/waterI 0.9664 8.5 0.615 0.73 0.733 0.4 

28 RVC/waterI 0.9724 8.5 0.615 0.722 0.712 1.4 

29 RVC/waterI 0.9615 8.5 0.615 0.743 0.750 1.0 

30 RVC/waterI 0.9681 8.5 0.615 0.727 0.727 0.0 

                                                         Average deviation                                                                    3.3  %   

I Bhattacharya et al  (2002). 
 



Table 2. Comparison of ETC values for two-systems calculated using different models. Thermal 
conductivity is in W m-1 K-1. 
                                
                                                       Boomsma’s model                            Bhattacharya’s model 

Sample        λe       
Number    (expt.)                      using eqn (A)          % error                 using eqn (B)          % error 
1 2.7 1.039 61.5 2.238 17.1       

2 4.6 2.894 37.1 4.146 9.8 

3 6.7 5.621 16.1 7.275 8.5 

4 3.9 2.684 31.2 3.917 0.4 

5 6.7 5.362 19.9 6.970 4.0 

6 2.2 0.464 78.9 1.704 22.5 

7 4.0 2.684 32.9 3.917 2.0 

8 6.9 5.556 19.4 7.199 4.3 

9 2.5 0.959 61.3 2.162 13.5 

10 3.9 2.470 36.6 3.688 5.4 

11 4.5 3.514 21.9 4.833 7.4 

12 3.7 2.001 45.9 2.833 23.4 

13 5.4 3.753 30.5 4.746 12.1 

14 7.65 6.435 15.8 7.884 3.1 

15 4.8 3.551 26.0 4.516 5.9 

16 7.6 6.177 18.7 7.578 0.3 

17 3.05 1.475 51.6 2.297 24.6 

18 4.95 3.551 28.2 4.516 8.7 

19 7.65 6.371 16.7 7.808 2.1 

20 3.3 1.927 41.6 2.756 16.4 

21 4.75 3.346 29.5 4.287 9.7 

22 5.35 4.353 18.6 5.435 1.6 

23 0.164 0.094 42.4 0.126 23.0 

24 0.15 0.077 48.4 0.108 27.7 

25 0.17 0.108 36.4 0.141 17.1 

26 0.16 0.089 43.9 0.121 24.3 

27 0.73 0.772 5.8 0.720 1.3 

28 0.722 0.753 4.3 0.701 2.8 

29 0.743 0.788 6.1 0.736 0.9 

30 0.727 0.767 5.5 0.715 1.6 

Average deviation                                                  31.1%                                                  10.1% 

 


